Шифр 64. Экспедиция издательства отправляет газеты в три почтовых отделения. Известно, что в первое отделение газеты доставляются своевременно

  • ID: 00485 
  • 14 страниц

Фрагмент работы:

Экспедиция издательства отправляет газеты в три почтовых отделения. Известно, что в первое отделение газеты доставляются своевременно в среднем в 96% всех случаев, второе – 89% , в третье – 91%. Найти вероятность того, что из трех почтовых отделений:

только одно получит газеты вовремя

два получат газеты вовремя

не менее двух получат газеты вовремя

хотя бы одно получит газеты вовремя

все отделения либо получат газеты вовремя, либо нет.

Решение:

Обозначим через:

событие Р1 – первое отделение получило газеты вовремя

событие Р2 – второе отделение получило газеты вовремя

событие Р3 – третье отделение получило газеты вовремя

тогда по условию:

вероятность того, что первое отделение получило газеты вовремя равна (1)=0.96;

вероятность того, что второе отделение получило газеты вовремя равна (2)=0.89;

вероятность того, что второе отделение получило газеты вовремя равна (3)=0.91;

Противоположные события:

событие [image] – первое отделение получило газеты не вовремя

событие [image] – второе отделение получило газеты не вовремя

событие [image] – третье отделение получило газеты не вовремя

и вероятности, соответствующие этим событиям равны:

[image]

[image]

1) Обозначим через событие А – только одно отделение получит газеты вовремя

Следовательно, [image] и вероятность события А найдем по теореме сложения и теореме умножения независимых событий:

[image]

2) Обозначим через событие В – два получат газеты вовремя. Тогда:

[image]

и вероятность равна:

[image]

3) обозначим через событие С – не менее двух получат газеты вовремя, т.е получат газеты два или все три отделения. Следовательно,

[image]

[image]

4) обозначим через событие D – хотя бы одно получит газеты вовремя, т.е. одно и более. Тогда,

[image]

[image]

5) обозначим через событие E – все отделения либо получат газеты вовремя, либо нет. Тогда,

[image]

и вероятность равна:

[image]

В ящике из 19 теннисных мячей, из которых 14 новых. Для первой игры берут три мяча, которые после игры возвращают в ящик. Для второй игры также берут из ящика три мяча.

1. Определить вероятность того, что все три мяча, взятые для второй игры, будут новыми.