Вариант 6. Колебания могут происходить в системе, которая называется колебательным контуром, состоящим из конденсатора

  • ID: 23233 
  • 6 страниц

Фрагмент работы:

Колебания могут происходить в системе, которая называется колебательным контуром, состоящим из конденсатора емкостью С и катушки индуктивностью L. , если в нем нет потерь энергии на нагревание соединительных проводов и проводов катушки, т. е. пренебрегают сопротивлением R. [image]

Чтобы возникли электрические колебания в этом контуре, ему необходимо сообщить некоторый запас энергии, т.е. зарядить конденсатор. Когда конденсатор заряжен, его энергия равна

[image], но [image],

поэтому [image], следовательно,

[image].

Так как после зарядки конденсатор будет иметь максимальный заряд то при q=qmax энергия электрического поля конденсатора будет максимальна и равна

[image].

В начальный момент времени вся энергия сосредоточена между пластинами конденсатора, сила тока в цепи равна нулю. При замыкании конденсатора на катушку он начинает разряжаться и в цепи возникнет ток, который, в свою очередь, создаст в катушке магнитное поле.

При разрядке конденсатора ток не сразу достигает своего максимального значения, а постепенно. Это происходит потому, что переменное магнитное поле порождает в катушке второе электрическое поле. Вследствие явления самоиндукции там возникает индукционный ток, который, согласно правилу Ленца, направлен в сторону, противоположную увеличению разрядного тока.

Когда разрядный ток достигает своего максимального значения, энергия магнитного поля максимальна и равна

[image],

а энергия конденсатора в этот момент равна нулю. Таким образом, через t=T/4 энергия электрического поля полностью перешла в энергию магнитного поля.

Полная энергия колебательного контура, в любой момент времени, равна сумме энергий магнитного и электрического полей

[image]

Так как контур идеальный, энергия не меняется со временем, то есть производная полной энергии по времени равна нулю, следовательно, равна нулю сумма производных по времени от энергий магнитного и электрического полей:

[image], то есть [image].

Знак минус в этом выражении означает, что когда энергия магнитного поля возрастает, энергия электрического поля убывает и наоборот. А физический смысл этого выражения таков, что скорость изменения энергии магнитного поля равна по модулю и противоположна по направлению скорости изменения электрического поля.

Вычисляя производные, получим

[image].

Но [image], поэтому [image] и [image]- мы получили уравнение, описывающее свободные электромагнитные колебания в контуре. Если теперь мы заменим q на x, х’’=на q’’, k на 1/C, m на L, то получим уравнение

[image],