Показать, что система линейных уравнений имеет единственное решение, и найти его двумя способами

  • ID: 06785 
  • 4 страницы

Фрагмент работы:

Задача 2.

Показать, что система линейных уравнений имеет единственное решение, и найти его двумя способами:

а) по правилу Крамера

б) матричным способом

Решение:

Вычислим определитель системы

так как..., то система имеет единственное решение.

а) Найдем решение системы по правилу Крамера

б) решим систему матричным способом.

Вычислим алгебраические дополнения:

Тогда обратная матрица равна

Решение системы в матричной форме запишется так:

Решения, найденные двумя способами совпадают.

Ответ:.........

Задача 23.

Решить графически задачу линейного программирования.

Решение:

Найдем решение задачи линейно программирования графическим способом. Построим область допустимых решений (рис.1.). Для этого построим прямые ограничений, для чего вычислим координаты точек пересечения этих прямых с осями координат.

=...

=...

=...

=...

Построим вектор...= (4, 1) и целевую функцию по уравнению: 4x1 + x2 = 4

На рис. 1 видно, что оптимальное решение соответствует точке С, лежащей на пересечении прямых (2) и (3). Поэтому ее координаты находятся как решение системы линейных уравнений, задающих эти прямые:

При этом значение целевой функции

Рис. 1. Графическое решение задачи.

Ответ:...