Шифр 59: задачи 3, 16, 26, 40, 44, 54, 70, 74, 89

  • ID: 43133 
  • 14 страниц

Фрагмент работы:

Задача 3. Даны вершины треугольника:

Сделать чертеж и найти:

длину стороны АВ;

внутренний угол при вершине А;

уравнение высоты, проведенной через вершину С;

уравнение медианы, проведенной через вершину В;

точку пересечения медианы ВЕ и высоты СD;

длину высоты, опущенной из вершины С.

Решение. Начнем решение задачи с выполнения чертежа. Построим точки

(2;– 4), (5; 0), (–1; 2) в прямоугольной системе координат Oxy и, соединив их, получим треугольник АВС. Проведем высоту СD и медиану ВЕ, уравнения которых необходимо найти. Причём, [image], а точка Е – середина отрезка АС.

[image]

1. Длину стороны АВ находим как расстояние между двумя точками А(2;-4) и В(5;0):

[image]

[image]

2. Отметим, что угол А в треугольнике является острым. Тангенс этого угла можно найти по формуле

[image]

Найдем угловые коэффициенты прямых:

[image]

[image]

Тогда, [image]

С помощью калькулятора или по таблице Брадиса определяем, что такое значение тангенса соответствует углу [image]А[image]63,40.

3. Уравнение высоты СD запишем в виде уравнения пучка прямых, проходящих через точку С:

[image].

По условию перпендикулярности СD и АВ: [image]

Ранее (см. п. 2) было найдено: [image].

Тогда, [image]

Подставим в уравнение [image] получим [image] или [image];

[image] – уравнение высоты СD.

4. Медиана ВЕ соединяет вершину В с точкой Е, которая является серединой отрезка АС. Координаты точки Е:

[image] [image]

Составим уравнение медианы ВЕ по двум точкам [image] и [image], воспользовавшись формулой: [image].

[image] [image]

[image]

[image] – уравнение медианы ВЕ.

5. Координаты точки пересечения высоты CD и медианы ВЕ найдем, решив систему уравнений для прямых СD и ВЕ:

[image]

В результате получим точку пересечения К[image], координаты которой соответствуют точке на чертеже.

6. Длину высоты найдем как расстояние от точки С до прямой АВ по формуле [image]

Уравнение прямой АВ составим, используя уравнение пучка прямых:

[image], где [image].

Получим [image], или [image];

[image] – уравнение прямой АВ.

Тогда, [image].

Ответы: