Билет 10. Дискретные случайные величины.определение, закон распределения, вид функции распределения

  • ID: 31760 
  • 4 страницы

Фрагмент работы:

1. Дискретные случайные величины: определение, закон распределения, вид функции распределения.

Величина, которая в результате испытания может принять то или иное значение, заранее неизвестно какое именно, считается .

Дискретной случайной величиной называется такая переменная величина, которая может принимать конечную или бесконечную совокупность значений, причем принятие ею каждого из значений есть случайное событие с определенной вероятностью.

Соотношение, устанавливающее связь между отдельными возможными значениями случайной величины и соответствующими им вероятностями, называется законом распределения дискретной случайной величины. Если обозначить возможные числовые значения случайной величины Х через х1, х2, ..., хn,..., а через рi = Р(Х = хi) вероятность появления значения хi, то дискретная случайная величина полностью определяется таблицей.

Таблица называется дискретной случайной величины Х.

Дискретная случайная величина может быть задана Функцией распределения случайной величины Х называется функция F(х), выражающая вероятность того, что Х примет значение, меньшее чем х:

Вероятность попадания случайной величины Х в промежуток от a до b выражается формулой

2. Финансовая эквивалентность обязательств. Консолидация платежей.

В практике нередко возникают случаи, когда необходимо заменить одно обязательство другим, например с более отдаленным сроком платежа, досрочно погасить задолженность, объединить несколько платежей в один (консолидировать платежи) и т.п. В таких ситуациях неизбежно возникает вопрос о принципе, на котором должно базироваться изменение контракта. Таким общепринятым принципом является финансовая эквивалентность обязательств, которая предполагает неизменность финансовых отношений сторон до и после изменения контракта.

Эквивалентными считаются такие платежи, которые, будучи "приведены" к одному моменту времени, оказываются равными. Приведение осуществляется путем дисконтирования к более ранней дате или, наоборот, наращения суммы платежа (если эта дата относится к будущему). Если при изменении условий принцип финансовой эквивалентности не соблюдается, то одна из участвующих сторон терпит ущерб, размер которого можно заранее определить. По существу, принцип эквивалентности следует из формул наращения и дисконтирования, связывающих величины Р (первоначальная сумма долга) и S (наращенная сумма, или сумма в конце срока). Сумма Р эквивалентна S при принятой процентной ставке и методе ее начисления. Две суммы денег S1 и S2, выплачиваемые в разные моменты времени, считаются эквивалентными, если их современные (или наращенные) величины, рассчитанные по одной и той же процентной ставке и на один момент времени, одинаковы. Замена S1 на S2 в этих условиях формально не изменяет отношения сторон.