Вариант 1. Шесть функций денежной единицы

  • ID: 27056 
  • 14 страниц

Содержание:


Вариант 1. Шесть функций денежной единицы

Шесть функций денежной единицы

Для определения стоимости собственности, приносящей доход, необходимо определить текущую стоимость денег, которые будут получены через какое-то время в будущем.

Известно, а в условиях инфляции куда более очевидно, что деньги изменяют свою стоимость с течением времени. Основными операциями, позволяющими сопоставить разновременные деньги, являются операции накопления (наращивания) и дисконтирования.

– это процесс приведения текущей стоимости денег к их будущей стоимости, при условии, что вложенная сумма удерживается на счету в течение определенного времени, принося периодически накапливаемый процент.

– это процесс приведения денежных поступлений от инвестиций к их текущей стоимости.

В оценке эти финансовые расчеты базируются на сложном процессе, когда каждое последующее начисление ставки процента осуществляется как на основную сумму, так и на начисленные за предыдущие периоды невыплаченные проценты.

Всего рассматривают шесть функций денежной единицы, основанных на сложном проценте. Для упрощения расчетов разработаны таблицы шести функций для известных ставок дохода и периода накопления (I и n), кроме того, можно воспользоваться финансовым калькулятором для расчета искомой величины [2, c.57].

Будущая стоимость денежной единицы (накопленная сумма денежной единицы), ( fvf , i , n ).

[image]

где FV – будущая стоимость денежной единицы;

PV – текущая стоимость денежной единицы;

i – ставка дохода;

n – число периодов накопления, в годах;

fvf,I,n=(1+i)n – дисконтирование.

Если начисления осуществляются чаще, чем один раз в год, то формула преобразуется в следующую:

[image]

k – частота накоплений в год.

Данная функция используется в том случае, когда известна текущая стоимость денег и необходимо определить будущую стоимость де нежной единицы при известной ставке доходов на конец определенного периода ( n ).

Правило 72х

Для примерного определения срока удвоения капитала (в годах) необходимо 72 разделить на целочисленное значение годовой ставки до хода на капитал. Правило действует для ставок от 3 до 18%.

Типичным примером для будущей стоимости денежной единицы может служить задача.